Zapewnienie bezpieczeństwa energetycznego (w tym elektroenergetycznego) jest jednym z ważniejszych problemów stojących przed państwami bez względu na obowiązujący w nich system gospodarczy. Pojęcie bezpieczeństwa energetycznego jest określane w różny sposób. Jedna z definicji określa bezpieczeństwo jako stan braku zagrożenia, a dodatek energetycznego oznacza brak zagrożenia w dostawach energii wynikający z samowystarczalności. Samowystarczalność energetyczna rozumiana jest jako stosunek ilości energii pozyskiwanej w kraju do ilości energii zużywanej [1,2].

Pojęcie bezpieczeństwa energetycznego dotyczy dwóch pod­stawowych podmiotów: odbiorcy (czy grupy odbiorców) jako pierwotnego podmiotu oraz dostawcy (zbioru dostawców) jako wtórnego podmiotu. Bezpieczeństwo energetyczne odbiorcy to określony stopień gwarancji korzystania z potrzebnych mu form energii w określonym czasie i w potrzebnej ilości oraz przy dostęp­nej dla niego cenie. Zapewnienie tego bezpieczeństwa stawia odpo­wiednie wymagania dostawcom. Bezpieczeństwo dostaw energii to natomiast gotowość dostawców do pokrycia pełnego zapotrzebo­wania na energię po akceptowalnych społecznie cenach w stanach normalnych i ograniczonego zapotrzebowania energii w stanach awaryjnych.

Poziom bezpieczeństwa energetycznego zależy od wielu czynni­ków. Do najważniejszych z nich można zaliczyć:

  • stopień dywersyfikacji źródeł zaopatrzenia,
  • pochodzenie źródeł zaopatrzenia (krajowe bądź zagraniczne),
  • magazynowanie paliw na terenie kraju,
  • własność przedsiębiorstw sektora energetycznego oraz systemu zaopatrzenia,
  • kondycja systemu zaopatrzenia (wielkość mocy przesyłowych, stan techniczny, niezawodność),
  • nadzór i regulacja systemu sprawowana przez państwo,
  • prognozowanie, planowanie oraz decyzje rozwojowe i inwesty­cyjne,
  • stabilność sytuacji wewnętrznej kraju i sytuacji międzynarodowej.

W kształtowaniu bezpieczeństwa energetycznego wyróżnia się następujące horyzonty czasowe: krótkoterminowe (operacyjne), se­zonowe (taktyczne) oraz długoterminowe (strategiczne).

Zagwarantowanie bezpieczeństwa długoterminowego wymaga strategicznych decyzji rozwojowych w energetyce. W przypadku elektroenergetyki decyzje dotyczyć będą rozwoju sektora wytwór­czego, czyli elektrowni oraz sektora przesyłu energii sieciami o róż­nych poziomach napięć. Problem bezpieczeństwa energetycznego w naszym kraju jest dostrzegany od wielu lat, o czym świadczą zapisy w głównych dokumentach prawnych dotyczących energety­ki. Jako pierwszy należy wymienić Prawo energetyczne, w którym zawarte jest sformułowanie: Bezpieczeństwo energetyczne to stan gospodarki umożliwiający pobycie bieżącego i perspektywicznego zapotrzebowania odbiorców na paliwa i energię w sposób technicz­nie i ekonomicznie uzasadniony, przy zachowaniu wymagań ochro­ny środowiska. Drugim dokumentem jest „Polityka energetyczna Polski do 2030 roku”, w którym zawarta jest bardziej precyzyjna definicja: (…) bezpieczeństwo dostaw paliw i energii jest to zapew­nienie stabilnych dostaw paliw i energii na poziomie gwarantują­cym zaspokojenie potrzeb krajowych i po akceptowalnych przez gospodarkę i społeczeństwo cenach, przy założeniu optymalnego wykorzystania krajowych zasobów surowców energetycznych oraz poprzez dywersyfikację źródeł i kierunków dostaw ropy naftowej, paliw ciekłych i gazowych.

Pewne dostawy energii elektrycznej do odbiorców o różnym za­potrzebowaniu wymagają (poza źródłami wytwórczymi) dobrze rozbudowanej sieci elektroenergetycznej, pozwalającej na transport energii od wytwórców do odbiorców. Struktura polskiej sieci o róż­nych poziomach napięć stwarza niejednokrotnie problemy w prze­syłaniu energii do odbiorcy, szczególnie do drobnego odbiorcy roz­proszonego (inaczej wiejskiego). Z uwagi na powyższe w artykule przedstawiono charakterystykę sieciowej infrastruktury średniego i niskiego napięcia w rozbiciu na sieć miejską i wiejską, omówiono aktualne wskaźniki zawodności elementów sieci oraz podano kie­runki działań dla zwiększenia pewności zasilania odbiorców.

Infrastruktura krajowej sieci elektroenergetycznej średniego i niskiego napięcia 

Aktualne dane o krajowej infrastrukturze sieciowej zawierają roczniki Agencji Rynku Energii Statystyka Elektroenergetyki Pol­skiej [3]. Wykorzystując dane zawarte w rocznikachz lat2002-2012 w tab. I zestawiono w ujęciu historycznym długość linii średniego i niskiego napięcia krajowej sieci elektroenergetycznej, a w tab. II liczbę stacji transformatorowo-rozdzielczych SN/ńN i moc zainsta­lowanych w nich transformatorów.

TABELA I. Długość krajowych linii SN i nN w latach 2002-2012:

Rok

Linie SN [tys. km]

Linie nN [tys. km]

napowietrzne

kablowe

napowietrzne

kablowe

2002 223,7 56,2 283,5 110,6
2003 224,2 57,0 285,7 114,2
2004 233,9 61,8 287,4 122,1
2005 233,9 62,0 287,0 125,8
2006 234,1 63,0 288,1 128,6
2007 234,3 65,4 288,2 130,6
2008 234,2 66,3 289,7 134,2
2009 234,4 67,6 290,4 137,7
2010 234,7 69,0 290,0 140,3
2011 234,7 70,8 291,7 144,3
2012 234,7 72,9 320,0 148,3
Średni roczny wskaźnik zmian
dla lat 2002-2012 [%]
0,48 2,64 1,22 2,98
Średni roczny wskaźnik zmian
dla lat 2002-2007 [%]
0,93 3,08 0,33 3,38
Średni roczny wskaźnik zmian
dla lat 2007-2012 [%]
0,03 2,19 2,11 2,57

Pełna charakterystyka infrastruktury sieci elektroenergetycznej powinna obejmować stan sieci na terenach miejskich i wiejskich. Roczniki [3] nie zamieszczają danych szczegółowych rozróżniają­cych sieci na terenach miejskich i wiejskich. Publikacje wyników prac studialnych [4, 5] pozwoliły autorom określić trendy zmian wystających w infrastrukturze sieci elektroenergetycznej średnie­go i niskiego napięcia na terenach miejskich i wiejskich. W tab. M podano liczbę stacji transformatorowo-rozdzielczych SN/nN oraz moce zainstalowanych w nich transformatorów w rozbiciu na sieci miejskie i wiejskie, natomiast w tab. IV i V zestawiono długości linii elektroenergetycznych średniego i niskiego napięcia z rozróż­nieniem sposobu ich wykonania – napowietrzne i kablowe – rów­nież w rozbiciu na sieci miejskie i wiejskie. Z uwagi na fakt, że dysponowano ograniczoną bazą danych statystycznych, w tab. ni-V zamieszczono dane tylko z lat 2002-2005 oraz 2007 r., obliczając jednocześnie średnioroczne wskaźniki zmian poszczególnych elementów sieci w analizowanym okresie tzn. dla lat 2002-2007. Aby umożliwić wnioskowanie, w tab. I i II podano także obliczone warto­ści średniorocznych wskaźników zmian poszczególnych elementów sieci odpowiednio dla lat 2002-2012,2002-2007 oraz 2007-2012.

TABELA II. Stacje transformatorowo-rozdzielcze SN/nN w latach 2002-2012:

Rok

Liczba stacji
[tys. sztuk]

Moc zainstalowanych
transformatorów [GVA]

2002 224,0 38,6
2003 226,3 39,0
2004 234,1 40,4
2005 236,1 40,9
2006 237,8 41,6
2007 239,9 42,1
2008 242,1 42,6
2009 244,4 43,3
2010 246,6 44,1
2011 249,0 45,0
2012 252,0 46,0
Średni roczny wskaźnik zmian 
dla lat 2002-2012 [%]
1,19 1,77
Średni roczny wskaźnik zmian 
dla lat 2002-2007 [%]
1,38 1,75
Średni roczny wskaźnik zmian 
dla lat 2007-2012 [%]
0,99 1,79

Analizując zestawione w tab. I-V wartości można sformułować następujące wnioski dotyczące rocznych wskaźników zmian iloś­ciowych poszczególnych elementów sieci:

  • przyrosty liczby stacji transformatorowych SN/nN w ostatnich pięciu latach (od 2007 r.) są niższe niż dla okresu lat 2002-2007,
  • przyrost mocy instalowanych transformatorów SN/nN utrzymuje się praktycznie na stałym poziomie z zauważalną przewagą wzrostu mocy jednostek na terenach wiejskich – dla lat 2002-2007 wskaźnik ten przekroczył wartość 2%,
  • przyrosty długości linii napowietrznych średniego napięcia są procentowo bardzo małe,
  • dla linii napowietrznych niskiego napięcia na obszarze miast za­uważalna jest nawet tendencja malejąca,
  • procentowe przyrosty długości linii kablowych we wszystkich analizowanych przypadkach są większe niż linii napowietrznych, przyrosty długości linii kablowych na terenach wiejskich są znacz­nie wyższe niż na obszarach miast (należy mieć jednak na uwadze fakt, że ich bezwzględne długości są znacznie niższe).

Udział liczby stacji transformatorowo-rozdzielczych SN/nN na te­renach wiejskich był w 2007 r. (tab. ID) na poziomie 67,7% ogólnej liczby stacji SN/nN, przy znacznie niższym udziale zainstalowanych mocy znamionowych transformatorów – 40,3% i trzykrotnie mniej­szej średniej mocy transformatora-104 kVA w sieci wiejskiej w po­równaniu z 323 kVA w sieci miejskiej. W tab. VI zestawiono średnie długości linii SN i nN przypadające na jedną stację SN/nN. Z po­równania podanych wartości wynika, że występuje ustabilizowanie się średnich długości linii w latach 2002-2007, a jedynie w stosunku do roku 1995 [6] nastąpiły pewne zmiany – zmalała średnia długość linii SN i nN, przypadająca na jedną stację na terenach wiejskich i wzrosła średnia długość linii nN przypadająca na jedną stację na obszarach miejskich.

TABELA III. Stacje transformatorowo-rozdzielcze SN/nN:

Rok

Liczba stacji 
[tys. sztuk]

Moc zainstalowanych 
transformatorów [GVA]

miasto

wieś

miasto

wieś

2002 70,4 148,5 23,2 14,9
2003 70,9 150,2 23,4 15,1
2004 71,6 151,1 23,7 15,2
2005 72,2 152,2 23,9 15,4
2007 75,6 158,2 24,4 16,6
Średni roczny wskaźnik zmian [%] 1,44 1,27 1,01 2,6
Średnia moc transformatora w stacji: miasto – 323 kVA, wieś -104 kVA (dla roku 2007).

 

TABELA IV. Długość linii elektroenergetycznych średniego napięcia (SN):

Rok

Linie napowietrzne
[tys. km]

Linie kablowe 
[tys. km]

miasto

wieś

miasto

wieś

2002 22,3 194,5 48,9 7,17
2003 22,2 197,8 49,2 7,46
2004 22,3 198,0 50,0 7,61
2005 22,3 198,1 50,5 8,00
2007 23,0 200,9 50,2 9,59
Średni roczny wskaźnik zmian [%] 0,62 0,65 0,53 5,99

 

TABELA V. Długość linii elektroenergetycznych niskiego napięcia (nN):

Rok

Linie napowietrzne
[tys. km]

Linie kablowe 
[tys. km]

miasto

wieś

miasto

wieś

2002 52,2 229,0 90,0 19,9
2003 52,6 230,3 90,7 22,0
2004 52,2 231,5 92,4 22,6
2005 52,0 232,4 93,5 24,2
2007 50,1 233,7 94,6 28,5
Średni roczny wskaźnik zmian [%] -0,82 0,41 1,00 7,45

 

TABELA VI. Powiązania linii SN i nN ze stacjami transformatorowymi SN/nN:

Rok

Średnia długość linii na stację transformatorową SN/nN [km/stacja]

LSN(w)

LnN(w)

LSN(m)

LnN(m)

1995 1,40 1,84 1,07 1,74
2002 1,36 1,67 0,96 1,99
2003 1,36 1,67 0,97 1,94
2004 1,35 1,67 0,97 1,93
2005 1,35 1,69 1,01 2,02
2007 1,33 1,66 0,97 1,91

 LSN(w) – średnia długość linii SN na jedną stację SN/nN na terenach wiejskich,
 
LnN(w) – średnia długość linii nN na jedną stację SN/nN na terenach wiejskich,

 LSN(m) –  średnia długość linii SN na jedną stację SN/nN na terenach miejskich,

 LnN(m) – średnia długość linii nN na jedną stację SN/nN na terenach miejskich.

Niezawodność elementów sieci elektroenergetycznej średniego i niskiego napięcia 

Przez wiele lat trudno było realnie ocenić zawodność układów za­silania energią elektryczną z uwagi na brak wiarygodnych danych statystycznych. Wykorzystywano głównie dane literaturowe, które były efektem badań prowadzonych w latach 60. i 70. ub.w. i można stwierdzić, że obecnie są one mało aktualne. Ostatnio coraz więk­szą uwagę zwraca się na zagadnienie ciągłości zasilania odbiorców energią elektryczną, stanowiącą jeden z elementów bezpieczeństwa energetycznego. Odzwierciedleniem tego stwierdzenia jest m.in. rozszerzenie (od roku 2002) zakresu danych opracowywanych w przedsiębiorstwach energetycznych i zestawianych w arkuszach statystycznych G-10.5 o wartości wskaźników charakteryzujących awaryjność elementów sieci elektroenergetycznej średniego i ni­skiego napięcia oraz zamieszczenie w rocznikach Statystyki Elek­troenergetyki Polskiej [3] średnich wartości tych wskaźników dla polskich sieci elektroenergetycznych.

 Dla przeprowadzenia kompleksowej analizy awaryjności sieci (łącznie z kosztami strat wynikającymi z niedostarczonej energii elektrycznej) wprowadzono pojęcie współczynnika awaryjności q     nazywanego również w literaturze [7, 8] współczynnikiem za­wodności lub współczynnikiem niezdatności, który uwzględnia nie tylko liczbę awarii elementów sieci zaliczanych do danej grupy (li­nie, transformatory), ale również czas przerwy w dostawach energii elektrycznej, który obejmuje czas trwania awarii i czas jej usunięcia. Dla odbiorcy bowiem niezmiernie ważną sprawą jest czas, w któ­rym nie może korzystać z energii elektrycznej i straty jakie ponosi w wyniku przerw w zasilaniu.

 Uwzględniana w analizach ekonomicznych ilość energii elek­trycznej niedostarczonej w danym roku w wyniku awarii obiektu sieciowego wyznaczana jest z wykorzystaniem współczynnika awa­ryjności danego elementu lub układu sieci elektroenergetycznej. Współczynnik awaryjności wynika z przeciętnej liczby awarii da­nego elementu lub układu sieciowego w ciągu roku oraz średniego czasu trwania awarii, a te dane podawane są obecnie w rocznikach Statystyki Elektroenergetyki Polskiej [3]. W celu oceny obecnego stanu sieci elektroenergetycznej w zakresie awaryjności w tab. VII zestawiono wartości współczynników awaryjności q spotykane w li­teraturze [7, 8] i wartości obliczone na podstawie danych z [3] dla lat 2002-2012.

Z przedstawionych danych w tab. VII wynika, że zdecydowana poprawa niezawodności pracy wystąpiła dla dwóch elementów sie­ciowych, tzn. dla transformatorów SN/nN, dla których współczyn­nik awaryjności zmalał praktycznie o dwa rzędy wartości i dla linii kablowych średniego napięcia, dla których współczynnik awaryj­ności zmalał praktycznie o rząd wartości. Uzasadnieniem tego jest zdecydowanie wyższa jakość stosowanych elementów sieci (trans­formatory hermetyczne bezobsługowe i kable o izolacji z polietylenu sieciowanego) oraz znacznie krótszy czas likwidacji uszkodzenia.

Tabela VII. Wartości współczynników awaryjności:

Rok

SN-LN

SN-LK

TR

nN-LN

nN-LK

(dane wg [7,8]) 4,00E-05 3,01E-04 1,60E-04 6,85E-05 8,22E-05
2002 5,45E-05 6,22E-05 5,43E-06 3,93E-04 8.10E-05
2003 238E-05 4,39E-05 2,68E-06 3,41E-04 8.71E-05
2004 4,17E-05 3,70E-05 3,49E-06 4,20E-04 9,64E-05
2005 3,60E-05 3.60E-05 3,84E-06 3,63E-04 7.38E-05
2006 3.38E-05 3,49E-05 4,87E-06 3,09E-04 6,99E-05
2007 6.11E-05 3,65E-05 5.11E-06 3,68E-04 7.38E-05
2008 4,47E-05 3,68E-05 3.25E-06 3,29E-04 5,41E-05
2009 5,25E-05 3.24E-05 3,77E-06 2,98E-04 5,77E-05
2010 7,05E-05 3,81E-05 5,75E-06 2,77E-04 6,91E-05
2011 5,51E-0,5 3,49E-05 5,48E-06 3,32E-04 7,49E-05
2012 3.95E-05 3,12E-05 4,87E-06 2,42E-04 5,05E-05
Średnia z lat 2002-2012 4,67E-05 3,85E-05 4,41E-06 3,34E-04 7,17E-05
 SN – średnie napięcie, nN – niskie napięcie, LN – linie napowietrzne, LK – linie kablowe, TR – transformatory.

Nieznaczną poprawę niezawodności pracy zauważa się również w przypadku linii kablowych niskiego napięcia. Natomiast niepo­kojącą sprawą jest wzrost średnich wartości współczynnika awaryj­ności linii napowietrznych – tak średniego, a szczególnie niskiego napięcia – w porównaniu z danymi literaturowymi sprzed wielu lat. Wskazywać to może na zły stan techniczny tych elementów, co skut­kować będzie z reguły większą od normatywnej liczbą uszkodzeń, a jednocześnie pociągać będzie za sobą również zwiększone straty u odbiorców w wyniku przerw w zasilaniu. Pewien wpływ na te wyniki (zwłaszcza dla linii SN) mają również bardzo niekorzystne warunki atmosferyczne, które wystąpiły w ostatnich latach. Na pod­kreślenie zasługuje fakt, że wartości współczynników awaryjności q dla roku 2012 dla wszystkich rodzajów linii elektroenergetycz­nych są niższe niż wartości średnie z dziesięciolecia 2002-2012.